Tutorial 4 for MATH 2020A (2024 Fall)

- 1. Let $\Omega \subset \mathbb{R}^3$ be the region common to the interiors of the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.
 - (a) Sketch the region Ω in the first octant.
 - (b) Find its volume.

Solution: $(b)\frac{16}{3}$

2. Let $R \subset \mathbb{R}^3$ be the cube bounded by the coordinate planes and the planes x = 2, y = 2, and z = 2. Find the average value of $F(x, y, z) = x^2 + 9$ over R.

Solution: $\frac{31}{3}$

3. Let $R \subset \mathbb{R}^2$ be the thin plate bounded by the parabola $x = y - y^2$ and the line x + y = 0. (a) Draw the thin plate R in xy-plane and label all the intersects.

(b) If the density of this plate is given by $\delta(x, y) = x + y$, find the moment of inertia about the x-axis of R.

Solution: I apologize for a mistake on Monday's tutorial, the formula for moment of inertia of a \mathbb{R}^2 -region R about the x-axis should be

$$I_x = \iint_R y^2 \delta(x, y) \, \mathrm{d}A,$$

and the correct answer for (b) should be $\frac{64}{105}$. Thanks a lot for the correction!

- 4. Let $\Omega \subset \mathbb{R}^3$ be the solid between the sphere $S_1 : \rho = \cos \phi$ and the hemisphere $S_2 : \rho = 2, 0 \le \phi \le \frac{\pi}{2}$ (all in spherical coordinate).
 - (a) Sketch S_1 and S_2 .
 - (b) Represent the solid Ω in spherical coordinate and find its volume.

Solution: (b) $\frac{31\pi}{6}$

- 5. Let $\Omega \subset \mathbb{R}^3$ be the smaller cap cut from a solid ball of radius 2 by a plane with distance 1 from the center of the sphere. Express the volume of Ω as an iterated triple integral in
 - (a) Cartesian coordinate;
 - (b) Cylindrical coordinate;
 - (c) Spherical coordinate.

Then find the volume of Ω .

Solution: $V(\Omega) = \frac{5\pi}{3}$